F(x)=1-3x+x^2/1+x+x^2

Simple and best practice solution for F(x)=1-3x+x^2/1+x+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=1-3x+x^2/1+x+x^2 equation:



(F)=1-3F+F^2/1+F+F^2
We move all terms to the left:
(F)-(1-3F+F^2/1+F+F^2)=0
Domain of the equation: 1+F+F^2)!=0
We move all terms containing F to the left, all other terms to the right
F^2)+F!=-1
F∈R
We get rid of parentheses
-F^2/1-F^2+3F-F+F-1=0
We multiply all the terms by the denominator
-F^2-F^2*1+3F*1-F*1+F*1-1*1=0
We add all the numbers together, and all the variables
-1F^2-F^2*1+3F*1-F*1+F*1-1=0
Wy multiply elements
-1F^2-1F^2+3F-1F+F-1=0
We add all the numbers together, and all the variables
-2F^2+3F-1=0
a = -2; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·(-2)·(-1)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-1}{2*-2}=\frac{-4}{-4} =1 $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+1}{2*-2}=\frac{-2}{-4} =1/2 $

See similar equations:

| -4=8m-2 | | 7(x+3)=11 | | 7=3.85+0.55x | | 4-(m+2)-3(m-2)=0 | | 13x-3(3x-2)=3x+14 | | 4(x+5)-5=9 | | 2u^2-16u+32=0 | | 3x-32+4-7=157 | | 3x^2-6x-4=8 | | 15x-44+8x+18=90 | | 9(n+2*n-2)=45 | | 5x÷3+6=4 | | −2p−2=−p+2 | | 14x-3(3x-6)=4x+3 | | f(3)=3.14(3)^2 | | 2w^2-4w-16=0 | | .5w+5=5 | | -a-7=20 | | 6x+9+4x+8=3x+10 | | 44=3u-14 | | 0.2x+4/14=7/14 | | 8−2n=4 | | 3x2=4x+5 | | 5a+2=-6 | | 7x29=162 | | 4y^2-31y+21=0 | | 80n+4=1 | | 9x=16-(-11) | | 0.2x+2/7=1/2 | | 0.2=150×a | | 6(1y+2)-4=-10 | | 2b+18=64 |

Equations solver categories